Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase.
نویسندگان
چکیده
beta-Lactam acylases are crucial for the synthesis of semisynthetic cephalosporins and penicillins. Unfortunately, there are no cephalosporin acylases known that can efficiently hydrolyse the amino-adipic side chain of Cephalosporin C. In a previous directed evolution experiment, residue Asn266 of the glutaryl acylase from Pseudomonas SY-77 was identified as being important for substrate specificity. In order to explore the function of this residue in substrate specificity, we performed a complete mutational analysis of position 266. Codons for all amino acids were introduced in the gene, 16 proteins that could be functionally expressed in Escherichia coli were purified to homogeneity and their catalytic parameters were determined. The mutant enzymes displayed a broad spectrum of affinities and activities, pointing to the flexibility of the enzyme at this position. Mutants in which Asn266 was changed into Phe, Gln, Trp and Tyr displayed up to twofold better catalytic efficiency (k(cat)/K(m))than the wild-type enzyme when adipyl-7-aminodesacetoxycephalosporanic acid (adipyl-7-ADCA) was used as substrate, due to a decreased K(m). Only mutants SY-77(N266H) and SY-77(N266M) showed an improvement of both catalytic parameters, resulting in 10- and 15-times higher catalytic efficiency with adipyl-7-ADCA, respectively. Remarkably, the catalytic activity (k(cat)) of SY-77(N266M) when using adipyl-7-ADCA as substrate was as high as when glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) was used, and approaches commercially interesting activity. SY-77(N266Q), SY-77(N266H) and SY-77(N266M) mutants showed a modest improvement in hydrolysing Cephalosporin C. Since these mutants also have a good catalytic efficiency when adipyl-7-ADCA is used and are still active towards glutaryl-7-ACA, they can be regarded as broad substrate acylases. These results demonstrate that the combination of directed evolution for the identification of important positions, together with saturation mutagenesis for finding the optimal amino acid, is a very effective method for finding improved biocatalysts.
منابع مشابه
Analysis of a substrate specificity switch residue of cephalosporin acylase.
Residue Phe375 of cephalosporin acylase has been identified as one of the residues that is involved in substrate specificity. A complete mutational analysis was performed by substituting Phe375 with the 19 other amino acids and characterising all purified mutant enzymes. Several mutations cause a substrate specificity shift from the preferred substrate of the enzyme, glutaryl-7-ACA, towards the...
متن کاملStructure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity.
The crystal structure of the wild-type form of glutaryl-7-ACA (7-aminocephalosporanic acid) acylase from Pseudomonas N176 and a double mutant of the protein (H57βS/H70βS) that displays enhanced catalytic efficiency on cephalosporin C over glutaryl-7-aminocephalosporanic acid has been determined. The structures show a heterodimer made up of an α-chain (229 residues) and a β-chain (543 residues) ...
متن کاملCrystal structure of penicillin G acylase from the Bro1 mutant strain of Providencia rettgeri.
Penicillin G acylase is an important enzyme in the commercial production of semisynthetic penicillins used to combat bacterial infections. Mutant strains of Providencia rettgeri were generated from wild-type cultures subjected to nutritional selective pressure. One such mutant, Bro1, was able to use 6-bromohexanamide as its sole nitrogen source. Penicillin acylase from the Bro1 strain exhibited...
متن کاملModeling and Experimental Analysis of Cephalosporin C Acylase and Its Mutant
7-amino cephalosporanic acid (7-ACA) is the crucial intermediate for the synthesis of semi-synthetic antibiotics, which is currently prepared by two-step biocatalysis using D-amino acid oxidase and glutaryl-7-amino cephalosporanic acid acylase (GL-7-ACA acylase) starting from cephalosporin C (CPC). Compared with the two-step enzymatic method, one-step method is more efficient and economical. Bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chembiochem : a European journal of chemical biology
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2004